Glass is a Viable Substrate for Precision Force Microscopy of Membrane Proteins

نویسندگان

  • Nagaraju Chada
  • Krishna P. Sigdel
  • Raghavendar Reddy Sanganna Gari
  • Tina Rezaie Matin
  • Linda L. Randall
  • Gavin M. King
چکیده

Though ubiquitous in optical microscopy, glass has long been overlooked as a specimen supporting surface for high resolution atomic force microscopy (AFM) investigations due to its roughness. Using bacteriorhodopsin from Halobacterium salinarum and the translocon SecYEG from Escherichia coli, we demonstrate that faithful images of 2D crystalline and non-crystalline membrane proteins in lipid bilayers can be obtained on microscope cover glass following a straight-forward cleaning procedure. Direct comparison between AFM data obtained on glass and on mica substrates show no major differences in image fidelity. Repeated association of the ATPase SecA with the cytoplasmic protrusion of SecYEG demonstrates that the translocon remains competent for binding after tens of minutes of continuous AFM imaging. This opens the door for precision long-timescale investigations of the active translocase in near-native conditions and, more generally, for integration of high resolution biological AFM with many powerful optical techniques that require non-birefringent substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Substrate on Structural and Electrical Properties of Cu3N Thin Film by DC Reactive Magnetron Sputtering

The aim of this paper is to study the effect of substrate on the Cu3N thin films. At first Cu3N thin films are prepared using DC magnetron sputtering system. Then structural properties, surface roughness, and electrical resistance are studied using X-ray diffraction (XRD), the atomic force microscope (AFM) and four-point probe techniques respectively. Finally, the results are investigated and c...

متن کامل

تهیه و ارزیابی پوشش کامپوزیتی نانوساختار هیدروکسی آپاتیت- فورستریت- شیشه زیست فعال برای کاشتنی های پزشکی

Despite excellent bioactivity of bioactive ceramics such as hydroxyapatite, their clinical applications have been limited due to their poor mechanical properties. Using composite coatings with improved mechanical properties could be a solution to this problem. Therefore, the strength of metal substrate and the bioactivity of the improved composite coating combined could yield suitable results. ...

متن کامل

Nano-bio Hybrid Material Based on Bacteriorhodopsin and ZnO for Bioelectronics Applications

Bioelectronics has attracted increasing interest in recent years because of their applications in various disciplines, such as biomedical. Development of efficient bio-nano hybrid materials is a new move towards revolution of nano-bioelectronics. A novel nano-bio hybrid electrode based on ZnO–protein for bioelectronics applications was prepared and characterized. The electrode was made by coval...

متن کامل

Nano-bio Hybrid Material Based on Bacteriorhodopsin and ZnO for Bioelectronics Applications

Bioelectronics has attracted increasing interest in recent years because of their applications in various disciplines, such as biomedical. Development of efficient bio-nano hybrid materials is a new move towards revolution of nano-bioelectronics. A novel nano-bio hybrid electrode based on ZnO–protein for bioelectronics applications was prepared and characterized. The electrode was made by coval...

متن کامل

Effect of Titania Colloid Solution Concentration on Hydrophobicity of Well-Aligned TiO2 Nanorods Synthesized via Hydrothermal Method

Among one dimensional nanomaterials, TiO2 nanorods have found important applications in various industries due to optical, photocatalyst and self-cleaning properties. In this research, at first TiO2 nanorods were synthesized on a glass substrate by hydrothermal method. Then a thin film of TiO2 particles was dip coated (as seed layer) on the substrate. After that, hydrothermal synthesis of TiO2 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015